Bernoulli Numbers and a New Binomial Transform Identity

نویسندگان

  • H. W. Gould
  • Jocelyn Quaintance
چکیده

Let (b n) n≥0 be the binomial transform of (a n) n≥0. We show how a binomial transformation identity of Chen proves a symmetrical Bernoulli number identity attributed to Carlitz. We then modify Chen's identity to prove a new binomial transformation identity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

q-Beta Polynomials and their Applications

The aim of this paper is to construct generating functions for q-beta polynomials. By using these generating functions, we define the q -beta polynomials and also derive some fundamental properties of these polynomials. We give some functional equations and partial differential equations (PDEs) related to these generating functions. By using these equations, we find some identities related to t...

متن کامل

Transforming Recurrent Sequences by Using the Binomial and Invert Operators

In this paper we study the action of the Binomial and Invert (interpolated) operators on the set of linear recurrent sequences. We prove that these operators preserve this set, and we determine how they change the characteristic polynomials. We show that these operators, with the aid of two other elementary operators (essentially the left and right shifts), can transform any impulse sequence (a...

متن کامل

Harmonic Number Identities Via Euler’s Transform

We evaluate several binomial transforms by using Euler's transform for power series. In this way we obtain various binomial identities involving power sums with harmonic numbers.

متن کامل

Carlitz’s Identity for the Bernoulli Numbers and Zeon Algebra

In this work we provide a new short proof of Carlitz’s identity for the Bernoulli numbers. Our approach is based on the ordinary generating function for the Bernoulli numbers and a Grassmann-Berezin integral representation of the Bernoulli numbers in the context of the Zeon algebra, which comprises an associative and commutative algebra with nilpotent generators.

متن کامل

A Comment on Matiyasevich’s Identity #0102 with Bernoulli Numbers

We connect and generalize Matiyasevich’s identity #0102 with Bernoulli numbers and an identity of Candelpergher, Coppo and Delabaere on Ramanujan summation of the divergent series of the infinite sum of the harmonic numbers. The formulae are analytic continuation of Euler sums and lead to new recursion relations for derivatives of Bernoulli numbers. The techniques used are contour integration, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014